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We obtain lower bounds for the magnetic Dirichlet form in dimensions d \ 2.
For d=2 the results generalize a well known lower bound by the magnetic field
strength: we replace the actual magnetic field B by an non-vanishing effective
field which decays outside the support of B as dist(x, supp B)−2. In the case
d \ 3 we establish that the magnetic form is bounded from below by the mag-
netic field strength, if one assumes that the field does not vanish and its direc-
tion is slowly varying.
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1. INTRODUCTION

The principal objective of this work is to obtain lower bounds for the
magnetic form

h[u]=F |(−iN−a) u|2 dx (1.1)

on u ¥ C10(R
d), d \ 2, with an appropriate vector-potential a ¥ L2(Rd)

having d real-valued components. Probably the simplest way to generate
lower bounds is to use the classical Hardy inequality

F |Nu|2 dx \
(d−2)2

4
F
|u|2

|x|2
dx,



which holds for all dimensions d \ 3 for u ¥ C.0 (R
d). It is worth pointing

out that this bound remains valid if the N-operator is replaced by its radial
part. In view of the diamagnetic inequality (see (2.6)) the Hardy inequality
implies the same bound for the form (1.1). In dimension d=2 however, the
Hardy inequality does not hold. Nevertheless, as was shown in ref. 8,
the magnetic field allows one to bound from below the angular part of the
quadratic form (1.1) and to write a Hardy-type inequality for d=2 with a
constant c depending strongly on the magnetic flux:

h[u] \ c F
|u|2

1+|x|2
dx. (1.2)

If the magnetic field B=curl a is compactly supported and the total flux

F=
1
2p

F B dx

is integer, then c=0. This inequality takes an especially elegant form in the
case of the Aharonov–Bohm magnetic vector-potential:

h[u] \min
n ¥ Z

|F−n|2 F
|u|2

|x|2
dx, u ¥ C.0 (R

20{0}), (1.3)

where F is the flux of the magnetic field. Clearly, the constant in this
inequality vanishes if the flux is integer, that is if the field is gauge equiva-
lent to the zero field. The proof of the estimates (1.2) and (1.3) is based on
the observation that for a suitable choice of the gauge, the angular part of
the quadratic form (1.1) is separated from zero if the flux F stays away
from the set of integers. The result of ref. 8 was extended to multiple
Aharonov–Bohm fluxes in ref. 1.

In the present paper we consider separately two cases: d=2 and d \ 3.
To derive a meaningful estimate for d=2 we exploit two elementary ideas.
The first of them is the standard lower bound

h[u] \ F ±B |u|2 dx,

which holds with either of the signs ± , see (2.13) below. The second
ingredient is the Hardy inequality for domains with Lipshitz boundaries.
Put together, these two ingredients yield a bound of the form

h[u] \ c F B̃ |u|2 dx,
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with an effective magnetic field B̃, which coincides with ±B on its support,
and decays outside the support as dist{x, supp B}−2. The constant c in the
above estimate depends only on the support of B, see Theorem 2.1 for the
precise statement. In contrast to (1.2) the constant c is explicit and it does
not depend on the flux.

In the case d \ 3 the problem becomes more complicated, as the
magnetic field B=da may now change its direction, see Section 2.3 for the
precise definition of this notion. Assuming that the field never vanishes,
under some extra conditions on the smoothness of B we prove the bound
of the Sobolev type

h[u] \ c F |B| |u|2 dx,

see Theorem 2.2. More detailed discussion of the result can be found in
Section 2.4.

In contrast to the magnetic case there is an extensive literature on the
non-magnetic Hardy and Sobolev inequalities. Various types of such non-
magnetic inequalities could be found in books (12, 14–16) and in the review
article. (3) Generalized Sobolev inequalities play an important role for Lieb–
Thirring bounds and thus for the problem of stability of matter. (10, 11, 13)

2. MAIN RESULT AND EXAMPLES

2.1. Magnetic Form

Let a=(a1, a2,..., ad) ¥ L2loc(R
d) be a real-valued vector function. Then

the symmetric quadratic form

h[u]=F |(D−a) u|2 dx, D=−iN,

is closable on C.0 (R
d). One can also define the magnetic operator H=Ha

as the unique self-adjoint operator associated with the closure of the above
form, but we do not need this fact in what follows. Assume that the two-
form of the magnetic field B=da exists in the sense of distributions and it
is a measurable on Rd. We shell need the notation

bjk=“jak−“kaj, k, j=1, 2,..., d.
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Since the two-form B is antisymmetric, it is fully determined by the com-
ponents bjk with j < k. The number of these components is

xd=d(d−1)/2.

We measure the strength of the field by the quantity

|B|== C
j < k

b2jk .

In the two- and three-dimensional case this quantity coincides with the
length of the magnetic field vector. If d=2, then the only non-zero com-
ponents of B are b12 and b21=−b12.

In the next two subsections we state our results separately for two
cases: d=2 and d \ 3. They have much in common but due to the simplic-
ity of the magnetic field structure for d=2, our results in this case are
obtained under more general assumptions on the field than for d \ 3. For
both cases we need to introduce a positive continuous function a which
plays the role of a slowly varying spatial scale reflecting variations of the
magnetic field. We associate with the function a the open ball

K(x)={y ¥ R2 : |x−y| < a(x)}.

The precise conditions on the function a for d=2 and d \ 3 are slightly
different and will be specified in each case separately.

2.2. Results for d=2

Denote B(x)=b12(x). The scale a is assumed to satisfy the conditions

a ¥ C1(R2); |Na(x)| [ 1, a(x) > 0, -x ¥ R2. (2.1)

To specify further conditions on B we need to divide R2 into sets relevant
to the strength of the field. For a (measurable) set C … R2 define

C ‘=0
x ¥ C

K(x). (2.2)

With the field B we associate two open sets W, L … R2, such that W ‘ … L

and (R20L) ‘ 5 W ‘=”. The case L=R2 is not excluded. Let l0 > 0 be
the lowest eigenvalue of the Laplace operator −D on the unit disk. with
the Dirichlet boundary conditions. Denote

A0=
5(2+4`l0)

`2
. (2.3)
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Assume that

|B(x)| a(x)2 \ 2A20, a.a. x ¥ L. (2.4)

The physical meaning of the sets W, L is that on W the field B is ‘‘large,’’ on
R20L the fieldB is negligibly small, and the setL0W is a ‘‘transition zone.’’

Before stating the main result we need to introduce another important
constant depending on W. Suppose that the boundary of W is Lipshitz. Let
d(x) be the distance from x ¥ R2 to W. Then there exists a positive constant
m [ 1/4 such that for any u ¥ H10(WŒ), WŒ=R20W, one has the following
Hardy inequality (see refs. 3, 4, and 9):

F
WŒ

|Nu(x)|2 dx \ m F
WŒ

|u(x)|2

d(x)2
dx. (2.5)

If WŒ is a union of convex connected components, one has m=1/4. In view
of the diamagnetic inequality

F |(D−a) u|2 dx \ F |N |u||2 dx, -u ¥ C10(R
2), (2.6)

we immediately infer from (2.5) that

F
WŒ

|(D−a) u(x)|2 dx \ m F
WŒ

|u(x)|2

d(x)2
dx, -u ¥ C10(WŒ). (2.7)

For other results connected with the inequality (2.5) and further references
see, e.g., refs. 2 and 6.

Theorem 2.1. Let W … R2 be an open set with Lipshitz boundary.
Let the function a be as specified in (2.1), and let the field B satisfy (2.4).
Suppose also that the field B is either non-negative or non-positive a.a.
x ¥ R2. Then

h[u] \
m

2
F

|u(x)|2

a(x)2+d(x)2
dx

for all u ¥ D[h].

2.3. Results for d \ 3

In this case our conditions on B are more restrictive. To state the
precise conditions let us begin with the function a. We assume that

|a(x)− a(y)| [ + |x−y|, 0 [ + < 1, a(x) > 0, -x, y ¥ Rd, (2.8)
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where + is a fixed number. Assume that for some F > 0

|B(x)| a(x)2 \ F, a.a. x ¥ Rd. (2.9)

This assumption guarantees that the field B never vanishes. Denote by
n={njk}

d
j, k=1 the matrix with the components

njk(x)=
bjk(x)
|B(x)|

, j, k=1, 2,..., d.

One may loosely call n the direction matrix for the field B. Our second
assumption on B is that for all k, l=1, 2,..., d and z ¥ Rd

|n(x)−n(y)| [ a, -x, y ¥K(z), (2.10)

with some 0 [ a [`x−1d /4. This assumption implies that the direction n of
the field varies slowly with x. Note that this condition is automatically
fulfilled in the case d=2 with a=0.

Theorem 2.2. Let d \ 3. Let the function a be as specified in (2.8),
and let the field B be a continuous function satisfying (2.9) and (2.10).
Then for a sufficiently large F > 0 in (2.9) one has

h[u] \ c F |B(x)| |u(x)|2 dx (2.11)

for all u ¥ D[h] with some positive constant c depending on + and F.

Theorem 2.2 holds for the case d=2 as well, but it gives nothing new
compared to the inequality (2.13), see the discussion below.

Note that in contrast to Theorem 2.1 we do not specify the constant c
in the inequality (2.11), neither do we provide any precise estimates on the
value of F sufficient for (2.11) to hold. In fact, as can be seen from the
proof in Section 4, following the calculations carefully, one can always
control the constants in all the estimates, but their values will hardly be
optimal, and thus we do not go down this route.

2.4. Discussion

The simplest known source of lower bounds for the magnetic
Schrödinger operator is the following representation for the quadratic form
h[u]. Denote Pk=−i“k−ak. Then

||Pku||2+||Plu||2=||(Pk±iPl) u||2±(bklu, u), u ¥ C10(R
d),
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for any pair k, l=1, 2,..., d. This identity implies that

h[u] \ ±(bklu, u), -k, l=1, 2,..., d. (2.12)

If one knows that for some k, l the quantity bkl preserves its sign, and
c |B| [ |bkl |, then the above inequality leads to the lower bound stated in
Theorem 2.2. The above bound is especially useful in the case d=2, in
which it can be rewritten as follows:

h[u] \ ±(Bu, u), u ¥ C10(R
2). (2.13)

In fact, Theorem 2.1 trivially follows from this estimate and (2.4) if one
assumes that L=R2. In this case, assuming, for instance, that B > 0 one
uses (2.13) with the ‘‘+’’ sign, which leads, in view of (2.4) to the bound

h[u] \ 2A20 F
|u(x)|2

a(x)2
dx.

Since 2A20 \ 100 and m [ 1/4, this implies the sought lower bound. On the
contrary, if B \ 0 and the support of the field does not coincide with R2,
then Theorem 2.1 yields a bound similar to (2.13), but with an effective
magnetic field

B̃(x)=
1

a(x)2+d(x)2
,

which, loosely speaking, coincides with B inside the support, and decays
away from it. It is important that this effective field does not vanish in
contrast to B. Below we demonstrate how to use Theorem 2.1 for a few
simple examples.

In the multi-dimensional situation the picture is different: the field B is
allowed to change its direction. In these circumstances the estimate (2.12)
is not very helpful as all the components bkj may change their signs.
Theorem 2.2 is specifically designed to handle this situation. We need to
assume however that B never vanishes.

A lower bound of a type similar to (2.11) was proved in ref. 5. Instead
of the function |B| the inequality in ref. 5 features a specific weight func-
tion, which coincides with |B| in the case of a polynomial magnetic field.
Another instance when such an inequality is known to hold, is described in
ref. 17. If the magnetic field is assumed to belong to a certain reverse
Hölder class, then it is shown in ref. 17 that h[u]+||u||2 \ c(a−2u, u) with
some explicitly defined scale function a. Theorem 2.2 is close in the spirit to
these results, but our proof is much more elementary, and it is based on a
natural partition of unity associated with the scale function a.
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2.5. Examples

If one wants to use Theorems 2.1 and 2.2, the first step is to make an
appropriate choice of the function a for a given magnetic field. Below we
illustrate how it can be done in the case d=2 for two special cases. Both
examples are deliberately made strongly radially asymmetric in order to
guarantee that the separation of variables is not applicable.

The first example is a compactly supported magnetic field. Let us
denote by DR(x, y) the open disk in R2 of radius R, centered at (x, y) ¥ R2.
Let x0 > R > 0 and L=DR(x0, 0) 2 DR(−x0, 0). Assume that

B(x)=0, x ¨ L, B \ B0, x ¥ L (2.14)

with some positive constant B0. Let us define the function a(x) by

a(x) — a0=`2A
2
0/B0, x ¥ R2. (2.15)

Clearly, a satisfies the conditions (2.1) and (2.4) on the set L. Moreover,
(R20L) ‘ 5 W ‘=”. If 2a0 < R then we can choose W as follows: W=
DR−2a0 (x0, 0) 2 DR−2a0 (−x0, 0). Now Theorem 2.1 leads to the inequality

h[u] \
m

2
F
|u(x)|2

a
2
0+d(x)

2 dx, u ¥ D[h], (2.16)

where

d(x, y)=˛0, if (x, y) ¥ W,

`(x−x0)2+y2−(R−2a0), if x \ 0 and (x, y) ¨ W,

`(x+x0)2+y2−(R−2a0), if x [ 0 and (x, y) ¨ W.

Let us consider now an ‘‘opposite’’ example: a magnetic fields with
holes in its support. Suppose as above that R < x0. Assume again that B
satisfies (2.14) with the set

L=R0DR(x0, 0) 2 DR(−x0, 0)

and define a by (2.15). If 2a0 < x0−R, define W by

W=R20DR+2a0 (x0, 0) 2 DR+2a0 (−x0, 0).
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Then Theorem 2.1 yields again (2.16) with the distance function
d(x)=d(x, y) given by

d(x, y)=˛0, if (x, y) ¥ W,

(R+2a0)−`(x−x0)2+y2 , if (x, y) ¥ DR+2a0 (x0, 0),

(R+2a0)−`(x+x0)2+y2 , if (x, y) ¥ DR+2a0 (−x0, 0).

Moreover, since WŒ=R20W is a union of two convex sets (namely disks),
one has m=1/4, see the comment after formula (2.5).

Note that in both cases the effective field

B̃(x)=
1

a
2
0+d(x)

2

in (2.16), shows the following behaviour in the strong field regime, that is
when B0 Q.. If x ¥ W, then B̃Q. as well. For x ¥ R20L the function B̃
behaves like d(x), and thus, effectively it ‘‘does not feel’’ the magnetic field
irrespectively of its strength. The set L0W, which consists of two rings of
width B−1/20 , is a transition region.

Obviously, both examples can be generalized to any number of disks.

3. PROOF OF THEOREM 2.1

3.1. A Partition of Unity

Let W, L … R2 be the sets introduced in Section 2.2, and let W ‘ be as
defined in (2.2). As was previously mentioned, Theorem 2.1 trivially
follows from (2.4) and (2.13) if L=R2. Henceforth we assume that
R20L ]”.

Let U ¥ C10(R
2) be a non-negative function such that U(x)=0 for

|x| \ 1 and > U(x)2dx=1. Denote

l=l(U)=F |NU(x)|2 dx. (3.1)

Note that the lowest eigenvalue of −D on the unit disk is related to the
number l in the following way:

l0=inf
U
l. (3.2)

This conclusion trivially follows from the variational principle.
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Lemma 3.1. Suppose that a satisfies (2.1). Then the function

f(x)=
1
a(x)2

F
W

‘
U 1x−y
a(x)
22 dy

possesses the following properties:

(i) f ¥ C1(R2), and |Nf(x)| [ (2+4`l) a(x)−1;

(ii) f(x)=1 for x ¥ W, f(x)=0 for x ¥ R20L, and 0 [ f(x) [ 1.

Proof. The inclusion f ¥ C1 is obvious, since a ¥ C1. The estimate for
Nf is checked by a direct calculation:

|Nf(x)| [
2 |Na(x)|
a(x)3

F
W

‘
U( · )2 dy

+
2
a(x)3

F
W

‘
|U( · )| |NU( · )| 51+|x−y|

a(x)
|Na(x)|6 dy

[
2
a(x)

+
4
a(x)3

F
W

‘
|U( · )| |NU( · )| dy

[
2
a(x)

+
4
a(x)
5 F |NU(x)|2 dx6

1
2

=
2+4`l

a(x)
.

Here we have taken into account that |Na(x)| [ 1.
In view of the formula > U(x)2 dx=1, we always have f(x) [ 1.

Furthermore, if x ¥ W, then by definitionK(x) … W ‘ , and hence

f(x)=
1
a(x)2

F
R
2
U 1x−y
a(x)
22 dy=1,

as required. On the contrary, if x ¥ R20L, then by definitionU((x−y) a(x)−1)
=0 for all y ¥ W ‘ , and therefore f(x)=0. L

This lemma allows one to introduce a convenient partition of unity:

Lemma 3.2. Let the domains W and L be as in Theorem 2.1, and let
R0L ]”. Then there exist two functions z, g ¥ C1(R2) such that

(i) 0 [ z [ 1, 0 [ g [ 1;

(ii) z(x)=1 for x ¥ W, g(x)=1 for x ¥ R20L;
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(iii) z2+g2=1;
(iv) |Nz| [ Aa−1, |Ng| [ Aa−1 with

A=
5(2+4`l)

`2
. (3.3)

Proof. Let f be a function constructed in Lemma 3.1, and let
k=1−f. It is straightforward to check that f2+k2=2(f−1/2)2+1/2
\ 1/2. Define

z=
f

`f2+k2
, g=

k

`f2+k2
.

These functions, obviously satisfy properties (i), (ii), and (iii). To prove (iv)
note that

|Nz| [
5

2`f2+k2
|Nf| [

5

`2
|Nf|,

and a similar bound holds for Ng. Now the required estimate follows from
Lemma 3.1. L

3.2. Proof of Theorem 2.1

Suppose that the conditions of Theorem 2.1 are fulfilled. Our next step
is to split the magnetic form h[u] into two parts that will be estimated
in two different ways. Let z, g be the functions from Lemma 3.2. Since
z2+g2=1, we have for any u ¥ C10(R

2):

h[u]=F |z(D−a) u|2 dx+F |g(D−a) u|2 dx

=h[zu]+h[gu]−F (|Nz|2+|Ng|2) |u|2 dx.

We use the following decomposition:

h[u]=
1
2
5h[u]−F (|Nz|2+|Ng|2) |u|2 dx6+1

2
h[zu]+

1
2
h[gu]. (3.4)

Since B does not change sign, it follows from (2.13) that h[u] \ (|B| u, u).
Let us estimate from below the first term in the r.h.s. of (3.4), remembering
that Nz and Ng are supported on the set L:

h[u]−F (|Nz|2+|Ng|2) |u|2 dx \ F
L

[|B|−(|Nz|2+|Ng|2)] |u|2 dx.
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In view of the condition (2.4) and of the fact that |Nz|2+|Ng|2 [ 2A2a−2, the
r.h.s. is bounded from below by − nE(u) with

E(u)=F
L

1
a(x)2

|u(x)|2 dx, n=2(A2−A20) \ 0.

Let us estimate the remaining two terms in (3.4). For the term with z use
(2.4) again, keeping in mind that z is supported on L:

h[zu] \ F |B(x)| z(x)2 |u(x)|2 dx \ 2A20 F
1
a(x)2

z(x)2 |u|2 dx.

For the term with g use Hardy’s inequality (2.7):

h[gu] \ m F g(x)2
|u(x)|2

d(x)2
dx, d(x)=dist(x, W).

Collecting all the estimates we now obtain the following lower bound:

2h[u] \ 2A20 F z2
|u|2

a
2 dx+m F g

2 |u|
2

d2
dx−2nE(u).

Since 2A20 \ 100 and m [ 1/4, one can write

2h[u] \ m F
|u|2

d2+a2
dx−2nE(u).

Neither the r.h.s. nor l.h.s. depend on the function U. Therefore we can
take the sup of both sides over all admissible U. In view of definitions (2.3)
and (3.3), the equality (3.2) yields supU (−n)=infU n=0. This leads
to the required bound from below and thus completes the proof of
Theorem 2.1.

4. PROOF OF THEOREM 2.2

Suppose that the condition of Theorem 2.2 are fulfilled, and in
particular, the function a satisfies (2.8).

4.1. Partition of Unity

The key stone of the proof is the following partition of unity asso-
ciated with the scale function a(x).
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Lemma 4.1. Let a(x) (resp. a(x)) be a continuous function satisfy-
ing (2.8). Then there exists a set of points xj ¥ Rd, j ¥N such that the open
balls Kj=K(xj) form a covering of Rd with the finite intersection property
(i.e. each ball Kj intersects with no more than Ñ=Ñ(+) <. other balls).
Moreover, there exists a set of non-negative functions fj ¥ C.0 (Kj), j ¥N,
such that

C
j
f2j=1, (4.1)

and

|“mfj | [ Cma−|m|, -m, (4.2)

uniformly in j.

Emphasize that the square in (4.1) will be convenient for us, though
the common definition of the partition of unity requires ; j fj=1. Proof of
this lemma is analogous to that of Theorem 1.4.10 from ref. 7 and we do
not reproduce it here.

Let us rephrase the finite intersection property for balls Kj as follows.
Denote

mj={k ¥N :Kj 5Kk ]”}.

Then

cardmj [N(+) :=Ñ(+)+1,

with the number Ñ(+) defined in Lemma 4.1.

4.2. Partition of the Magnetic Form: Proof of Theorem 2.2

Let us use the partition of unity constructed in Lemma 4.1. Let
u ¥ C10(R

d). Then a simple calculation, similar to that in the proof of
Theorem 2.1, shows that

h[u]=C
k
h[fku]−C

k
F |Nfk |2 |u|2 dx. (4.3)

Estimate the first term in the r.h.s. as follows:

N C
k
h[fku] \C

k
C
l ¥mk

h[flu], N=N(+).
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Let us fix k ¥N. Let j, l ¥ [1, d] be a pair of integers such that |bjl(xk)| \
`x−1d |B(xk)|. Such a pair always exists. Assume without loss of generality
that bjl > 0. Then, in view of (2.10)

bjl(x) \
3

4`xd
|B(x)|, x ¥Kk.

Using (2.10) again we obtain

bjl(x) \
1

2`xd
|B(x)|, x ¥ 0

s ¥mk

Ks.

Estimate from below using (2.12):

C
s ¥mk

h[fsu] \ F bjl C
s ¥mk

f2s |u|
2 dx \

1

2`xd
F |B| C

s ¥mk

f2s |u|
2 dx.

The last integral is bounded from below by

1

2`xd
F
Kk

|B| |u|2 dx.

Here we have used the fact that ; s ¥mk
fs(x)2=1 for all x ¥Kk, by defini-

tion of mk. Consequently

C
k
h[fku] \

1
N

C
k

C
s ¥mk

h[fsu] \
1

2N`xd
C
k
F
Kk

|B| |u|2 dx. (4.4)

Let us estimate h[u] from below using (4.3) and (4.4):

h[u] \C
k
F
Kk

5 1

2N`xd
|B|− |Nfk |26 |u|2 dx.

Here we have used the fact that Nfk is supported onKk. According to (2.9)
and (4.2) we have

|Nfk |2 [ c2a−2 [ c2F−1 |B|,

so that

h[u] \ 5 1

2N`xd
−c2F−16 C

k
F
Kk

|B| |u|2 dx.
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Assuming that F is sufficiently large, so that the factor before the integral
is positive, we get

h[u] \ c F |B| |u|2 x, u ¥ C10(R
d).

This is the required bound. Proof of Theorem 2.2 is now complete.
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